
  

 
 

Review paper  

Numerical analysis of the influence of mining ground 
deformation on the structure of a masonry residential building 

L. Szojda1, Ł. Kapusta2 

Abstract: The article presents numerical analysis of a typical residential building in the Upper Silesian Coal 
Basin, which was erected in the early twentieth century and was not protected against mining ground 
deformations. The greatest impact of ground deformation on buildings are ground horizontal strain ε and ground 
curvature K. Numerical calculations included the building and the ground to take into account the effect of soil-
structure interaction. The structure of the analysed building was made of masonry with wooden ceiling and roof 
elements. The ground was implemented as a layer 3.0m below the foundations and 3.0 m outside the building's 
projection. Construction loads are divided into two stages – permanent and functional loads as well as ground 
mining deformation. The maximum convex curvature K+ and the horizontal strain of the substrate ε+ were 
achieved in the 8th load step. The results of the analyses were presented in the form of stress and deformation 
maps. The most important results are the magnitude of the main tensile stresses σmax, which could to create 
cracks in the structure may occur after exceeding the tensile strength ft of the material. The presented method can 
be used to the analysis of endangered building objects by mining ground deformations. 
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strain 
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1. Introduction 

The urban buildings of Upper Silesian Coal Basin (USCB) have developed over the centuries and 

a large proportion of the current residential buildings date back to the beginning of the 20th century. 

A significant increase in housing construction dates back to this period and it was connected with 

the development of heavy industry, particularly mining. Buildings constructed at that time were 

usually adapted to take over the impact of soil deformations caused by mining. One of the few 

methods that were used at that time was the division of a structure into smaller segments, which 

allowed for limiting the increase of internal forces in the event of ground deformations. 

Nevertheless, the impact of terrain deformation on buildings caused an increase in internal forces 

that could lead to damage to the building structures. 

The problem of structural building damage due to soil deformation, caused by the mining industry, 

is still relevant. Newly constructed buildings are designed and erected in accordance with the 

recommendations given in the relevant standards. Existing buildings, however, are often in a worse 

technical state and not secured against such influences. Determining the size and shape of the soil 

deformation, and thus the increase of loads and internal forces in the structure, is the most important 

step in ensuring the safe operation of the building.  

This article presents a numerical analysis of an actual building that was erected at the beginning of 

the previous century, using traditional technology and subjected to the influence of mining ground 

deformations. The building was subjected to the effects of ground deformations which were caused 

by the exploitation of the coal bed lying directly below it.  

Ground deformations caused by mineral exploitation can be classified as continuous or 

discontinuous in [1]. Ground deformations are also accompanied by ground tremors, which affect 

building structures, which was presented e.g. in [2], [3], [4]. Continuous deformation occurred in 

the majority of cases, as described by various authors such as [5], [6], [7]. A theory for predicting 

soil deformation due to mining had already been proposed by the beginning of the 20th century. The 

first theory of subsidence prediction for a mining field of any shape, based on the geometry-integral 

relation, was proposed in the 1930s [8]. Computational methods began to be intensely developed, 

particularly in [8], [9], [10] and also [11]. In the largest coal-producing countries (China, the USA 

and the countries of Central and Eastern Europe, particularly Poland), the theory put forward in [9] 

was used to calculate the soil deformation; this was also described in [12] and [13]. According to 

that theory, ground deformation is described by five parameters: settlement w, tilt T, radius of 

curvature R (or curvature K = 1/R), horizontal displacement U and horizontal strain ε. The 
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theoretical basis for the behaviour of building structures under these influences was given in [14] 

and, according to its assumptions, the number of significant ground parameters can be reduced to 

two: curvature K and horizontal strain ε.  

2. Background 

Determining the actual values of the direct impact on a structure is no longer unambiguous and 

depends on many factors. When analysing the structure affected by soil deformation, it is necessary 

to take into account the rigidity of the structure and soil properties at the foundation level. Detailed 

analysis of a building’s structural response to ground deformation should be considered as a set 

soil-structure interaction. The complex relations between a building and the terrain are best resolved 

by advanced numerical analysis, which should be verified for the actual construction. Attempts at 

the numerical analyses of these types of problems are rare. The issues regarding the influence of 

terrain curvature on buildings are presented in [15] and [16]. They described a structure’s 

vulnerability according to the materials used and building geometry, depending on the predicted 

mining subsidence. Protection of the building against the influence of soil deformation is in this 

case a natural engineering operation. Typical solutions of such treatments, with respect to buildings, 

are shown in [17], [18], [19] and [20]. The protection of buildings through geotechnical solutions 

are less developed but were presented in [21] and [22]. Some similar considerations regarding the 

construction of buildings have been presented [23], [24], [25]. 

Because the operating period of the coalbed exploitation was known and the surrounding area (as 

well as the objects themselves) was measured, the measured points were stabilised in the ground 

directly at the building location and on the longitudinal walls above ground level. In this case, the 

location of the structures subjected to measurements was such that the direction of the revealed 

deformations was parallel to the longer axes of the buildings. The measurements were being carried 

out as the deformations were revealed, which allowed for determining horizontal deformations in 

the ground and the curvature of the terrain, as well as the curvature of the building structures. The 

adequate accuracy was achieved by using of method of precision levelling. Fig. 1 shows the 

location of the measuring points on one of the buildings and the adjacent measuring line. An 

assessment of the extent of the damage to the structures was made before and after the appearance 

of all the influences. This became the basis for confirming the validity of the results of the 

numerical analysis. 
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Fig. 1. Location of measured points and progress of the mining longwall operational front under the 

monitored area 

3. Soil-structure interaction layout assumed for the numerical analysis 

3.1. Building structure and ground parameters 

The building that was the subject of this study, which was subjected to mining-induced ground 

deformation, consisted of one segment and had projection dimensions of 44.3×11.8 m. The 

structure of the building was typical for the USCB region: masonry with a wooden structure 

forming the above-ground floor and roof. Depending on the position, the thickness of the basement 

walls were 52 cm and the walls above were 38 cm thick. The masonry material was assumed to be 

homogeneous. The material parameters adopted for the analyses were determined based on 

macroscopic studies and adopted on the basis of [19]: 

• compressive strength of the wall    fk = 2.2 MPa, 

• volumetric weight of the wall    γ = 18 kN/m3, 

• long-lasting modulus of elasticity of the wall  E = 900 MPa. 

A schematic projection of typical floor is shown in Fig. 2.  
 

 

Fig. 2. Schematic projection of the typical floor for the monitored building 
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The analysis does not take into account wooden ceilings or roof constructions due to their 

insignificant stiffness; they do not constitute stiffeners for the bent building. 

After making the outcrop in the foundation level, clay was found to be in a hard-plastic state with 

the following parameters: 

• degree of plasticity     IL = 0.2, 

• internal friction angle     φ = 18°, 

• cohesion       c = 32 kPa. 

3.2. Mining-inducted ground deformation  

The excavated longwall panel was located below the observed building. The longwall front moved 

in a direction that was longitudinal to the long wall of the building. The basic parameters of the 

excavated coal seam (located directly under the building) were as follows: 

• average depth of the exploited seam of coal  710 m, 

• longwall panel length     1900 m, 

• longwall panel width      400 m, 

• thickness of the exploited longwall panel   1.8 m, 

• method of deposit exploitation     caving carried out, 

• time of exploitation of longwall panel   August 2014 – March 2016. 

Deformations of the ground and building were observed on embedded measured points (Fig. 1). The 

observations were made during the whole period, revealing influences and being repeated weekly. The 

most interesting results, with respect to the subsiding ground measured points, are presented in Fig. 3. 

 

 
Fig. 3. Relative vertical displacements of ground measured points during revealing of subsidence 
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4.2. Method of applying to the structure 

For the most realistic representation of the object's loads, the loads were divided into two parts. The 

first part included typical dead and service loads. The dead load of the wall structure was 

implemented as a volume load but the timber ceiling, timber roof and service load of repeating floors 

were put on the walls on each level of the floors. The values of the volumetric loads (masonry) were 

assumed to be 23.0 kN/m3 and the surface loads on the levels of the floors were between 17.0 and 

64.0 kN/m2. Those service and dead loads were applied to the structure in three proportional steps.  

The other part of the loading was the ground deformation. These deformations were implemented to 

the block of the ground which was supported in a perpendicular direction to the bottom and side 

surfaces of the block. According to the measured values of the moved measured points and the 

theory of deformation prediction [9], the displacements caused by the radius of curvature R and 

horizontal strain ε were introduced into the supports of the ground block. The directions R and ε 

changed along the long wall of the structure. In Fig. 3, a strain of the ground can be seen, which 

shows the edge zone of the created subsiding basin. The measurement of the subsidence period did 

not recognise the concave shape of curvature K and compacting horizontal strain ε. This caused 

a situation when the building was loaded only by a convex part of the basin edge and horizontal 

strain. These deformations have been divided into two parts: 

• increasing the curvature and horizontal deformation from the straight surface to the maximal 

bend of convex curvature (R = +33.0 km) and tensile horizontal strain (ε = +0.9 mm/m), 

• reducing curvature and horizontal strain to achieve the initial state – a flat surface. 

Each of the above parts were divided into three loading steps.  

4.3. Basic information about numerical model 

The analysis was carried out using the ATENA commercial software, made by Červenka Consulting, 

which used Finite Element Methods for volume as well as plane (shell) elements. The material 

models were defined in the software and can be chosen for particular needs, depending on the 

problem being solved. Two different materials were used for volume elements and one for the contact 

layer. All masonry structures were modelled by a defined cementitious material with a boundary 

surface described on the basis of the three-parameter Willam-Warnke model. The soil was modelled 

by the material model with the Drucker-Prager boundary surface. The interface layer, between the 

foundation footing and below the ground, could transmit full compression strength, zero tensile 

strength and 0.25 friction coefficient. All material models used the non-elastic behaviour of the 
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material. The basic parameters of that material are presented in Tab. 1 and a detailed description was 

given in [26]. 

Tab. 1. Basic parameters of the material model 
Material Parameters of material model Material model type 

Masonry fc [MPa] ft [MPa] E [MPa] ν [-] cementitious 2.2 0.2 900 0.22 

Soil ϕ [°] c [MPa] E [MPa] ν [-] Drucker-Prager 18 0.032 30 0.25 
 

The numerical calculations were carried out with tetrahedral FE, for volume elements, and 

prismatic FE, for shell elements. The whole of the numerical model was composed of about 

219,000 tetrahedral elements, 2,600 prismatic elements and 69,000 nodes. The numerical model 

with mesh is presented in Fig. 4. 

5. The results of the numerical analyses  

The results of the numerical analyses were presented in the form of stress maps in the longitudinal 

walls. Due to the nature of terrain deformation strain, an increase in σ stress has been found. The 

following maps show vertical σzz, horizontal σxx, maximal σmax and minimal (principal) stresses 

σmin. Vertical stresses σzz do not change significantly (Fig. 5 and 6). 

In order to present the actual behaviour of the object under the influence of ground deformation, the 

loads were applied in the subsequent calculation steps. The first three calculation steps included all 

the predicted loads in accordance with the standards in force, these were dead and service loads. In 

twenty consecutive steps, deformations corresponding to the passage of the entire edge of the 

mining basin were applied. Thus, in the fifth step, the extreme convex curvature was achieved, and 

in the fifteenth one the extreme concave curve. The other characteristic values of the basin edge are 

as followed the start of the terrain deformation process, the transition from the convex to the 

concave part, and then the return to the state before the ground deformation. Those values are 

achieved in the calculation steps 0th , 10th, and 20th. Due to the greatest influence of the ground 

deformation corresponding to the convex curvature only half of the calculation results are shown 

(calculation steps 0th to 10th). To get the full results the three initial steps were taken into account 

(step 1st to 3rd), so that corresponds to the following calculation steps: 

• 3rd calculation step – all dead and service loads, 

• 8th calculation step – the extreme value of convex curvature K and tensile horizontal strain ε, 

• 13th calculation step – decreasing of the K and ε values to the initial state (3rd step). 
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of these stresses also occurs in the places as the horizontal stresses σxx. The highest stress σmax 

concentrations occur where the wall stiffness decreases, i.e. in the corners of window and door 

openings. Stress levels do not exceed the uniaxial tensile strength ft but the complex stress state in 

the elements reveals the possibility of cracking (Fig. 9). The results of the analysis coincide with the 

observed damage to the actual building studied. On this basis, it can be concluded that the 

assumptions adopted in the analysis of the soil-structure interaction system correctly reflect reality.  
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Analiza numeryczna wpływu deformacji podłoża górniczego na konstrukcję murowanego 
budynku mieszkalnego 

Słowa kluczowe: konstrukcja murowa, analiza numeryczna, górnicze osiadania terenu, krzywizna terenu, poziome 
odkształcenia terenu 

Streszczenie:  
Starzejąca się struktura zabudowy miast w rejonach eksploatacji górniczej wpływa znacznie na zwiększenie kosztów 
naprawy uszkodzeń obiektów powierzchni. Prognozowanie zachowania się budynków pod wpływem deformacji 
podłoża w przypadku, gdy nie są one do tego przystosowane staje się bardzo istotne z punktu widzenia bezpieczeństwa 
tych konstrukcji. Stało się to przyczyną przedstawienia przykładu analizy numerycznej typowego budynku 
mieszkalnego obszaru Górnego Śląska, który powstał w początkach XX wieku i nie był przystosowany do przeniesienia 
górniczych deformacji terenu. W celu dokładnego odwzorowania zachowania się obiektu pod wpływem deformującego 
się podłoża przeprowadzono analizę układu budowla – podłoże, w tym przypadku górnicze. Autorzy, posiadając wiedzę 
kiedy oraz w jakim obszarze będą ujawniały się osiadania na skutek wyeksploatowanej ściany, zastabilizowali układ 
punktów pomiarowych w najbliższym sąsiedztwie budynku oraz na ścianach podłużnych budynku. Wyniki pomiarów 
poziomych i pionowych przemieszczeń posłużył do ich wprowadzenia w modelu obliczeniowym. Zgodnie z teoriami 
prognozowania górniczych deformacji terenu typu ciągłego największy wpływ na budynki mają poziome deformacje 
podłoża � i krzywizna terenu K. Charakterystyki przebiegów tych zmiennych przyjęto wg teorii Knothego. Wpływy te 
należy rozważać jako dodatkowe obciążenia budynku, ale nie należy ich przykładać bezpośrednio do konstrukcji, lecz 
jako odkształcenia podłoża. Z tego powodu obliczenia numeryczne objęły budynek oraz bryłę podłoża aby uwzględnić 
efekt współpracy budowla–podłoże. Konstrukcja budynku była murowana z drewnianymi elementami stropów i dachu, 
które ze względu na znikomy wpływ sztywność pominięto w obliczeniach numerycznych. Bryła podłoża została tak 
dobrana, że obejmowała warstwę o grubości 3,0 m poniżej fundamentów oraz 3,0m na zewnątrz rzutu budynku. 
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Pionowe i poziome powierzchnie bryły gruntu zostały podparte przegubowo w kierunku prostopadłym do ich 
powierzchni. Analizę numeryczną wykonano przy użyciu pakietu programów Atena i dla każdego z materiałów układu 
wprowadzono odpowiedni model materiałowy – dla gruntu model Druckera-Pragera, a dla elementów murowych 
model sprężysto-plastyczny opisany w pakiecie jako ‘cemetitous’, który wykorzystuje powierzchnię graniczną 
przedstawioną przez Willama-Warnke. Obciążenia konstrukcji podzielono na kilka etapów. W pierwszym etapie 
przyłożono obciążenia stałe i użytkowe budynku (3 kroki obliczeniowe), a w drugim deformacje podłoża. 
Odwzorowano przejście wypukłej części krawędzi niecki górniczej, które podzielono na 10 kroków obciążeniowych. 
Powstania maksymalnej krzywizny wypukłej K+ i odkształcenia podłoża ε+ osiągnięto w 8 kroku obciążeniowym, 
a powrót do stanu początkowego w 13. Wyniki analiz przedstawiono w postaci barwnych map naprężeń. Najistotniejsze 
wyniki to wielkość głównych naprężeń rozciągających, w zależności od których mogą powstawać zarysowania 
konstrukcji po przekroczeniu wytrzymałości na rozciąganie. Na mapach wyraźne ich koncentracje pojawiają się 
w górnej części ścian konstrukcji oraz w narożach otworów okiennych i drzwiowych. Jest to zgodne z obserwacjami na 
obiektach, które zostały poddane takim deformacjom. Przedstawiony sposób może zostać wykorzystany 
w szczegółowym podejściu do analizy zagrożonych obiektów budowlanych.  
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